STUDENT STUFFALWAYS BE HAPPY AND MAKE OTHERS HAPPY MAIN PAGE SOFTWARES INTERNET ENTERTAINMENT

Latest News : • ALL JNTU PREVIOUS QUESTION PAPERS AND ONLINE BITS ARE UPDATED • LIST OF DIFFERENT EDUCATIONAL WEBSITES
Website Hit Counter
HTML Counter
Hi Friends a new Ads Portal is Started .So please open the site and click ads .ADS PORTAL CHAT WITH ME


STUDENTS ZONE

Forum Topics
1 JNTU Zone
subforms:- Ist Year IInd Year IIIrd Year and IVth Year

12
2 E-books and Novels

144
3 Materials
subforms:- MAT,CAT,GRE,I-CET,EAMCET,E-CET,MBA etc...

22
4 Languages
subforms:-C,C++,JAVA,ORACLE,FOXPRO,etc...,

6
5 Paper Presentations
subforms:-PowePoint Slides

270
6 Programs
subforms:-C,JAVA,DBMS,DOT NET etc..,

13
7 Job Zone
subforms:-Aptitudes,CAmpus papers,Technical and HR Questions etc..,

44
8 Student Resumes

5
9 Student Projects
subforms:-miniprojects,main projects

25
10 Request and Suggestions Zone

0

AIEEE-NEW SYLLABUS-PAGE-1

AIEEE 2008..New Pattern Syllabus Chemistry
Central Board of Secondary Education
All India Engineering/Architecture Entrance Examination
Shiksha Sadan, 17 - Rouse Avenue, Institutional Area, New Delhi - 110002


SECTION: A


Physical Chemistry


UNIT -1:


SOME BASIC CONCEPTS IN CHEMISTRY


Matter and its nature, Dalton's atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.
UNIT-2: STATES OF MATTER
Classification of matter into solid, liquid and gaseous states.
Gaseous State:
Measurable properties of gases; Gas laws - Boyle's law, Charle's law, Graham's law of diffusion, Avogadro's law, Dalton's law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation, Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor, van der Waals equation, liquefaction of gases, critical constants.


Liquid State:
Properties of liquids - vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).




Solid State:
Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg's Law and its applications, Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; electrical, magnetic and dielectric properties.


UNIT - 3:


ATOMIC STRUCTURE


Discovery of sub-atomic particles (electron, proton and neutron); Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; spectrum of hydrogen atom, Bohr model of hydrogen atom - its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr's model; dual nature of matter, de-Broglie's relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, ? and ?2, concept of atomic orbitals as one electron wave functions; Variation of ? and ?2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d - orbitals, electron spin and spin quantum number; rules for filling electrons in orbitals – aufbau principle, Pauli's exclusion principle and Hund's rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.


UNIT - 4:


CHEMICAL BONDING AND MOLECULAR STRUCURE


Kossel - Lewis approach to chemical bond formation, concept of ionic and covalent bonds.
Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.
Covalent Bonding: Concept of electronegativity, Fajan's rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.
Quantum mechanical approach to covalent bonding: Valence bond theory - Its important features, concept of hybridization involving s, p and d orbitals; Resonance.



Molecular Orbital Theory - Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, mo1ecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.
Elementary idea of metallic bonding. Hydrogen bonding and its applications.


UNIT - 5: CHEMICAL THERMODYNAMICS
Fundamentals of thermodynamics: System and surroundings, . extensive and intensive properties, state functions, types of processes.
First law of thermodynamics - Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity, Hess's law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ioniz-ation and solution.

Second law of thermodynamics; Spontaneity of processes; ?S of the universe and ?G of the system as criteria for spontaneity, ?Go (Standard Gibbs energy change) and equilibrium constant.


UNIT- 6:


SOLUTIONS


Different methods for expressing concentration of solution - molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult's Law - Ideal and non-ideal solutions, vapour pressure - composition plots for ideal and non-ideal solutions; Colligative properties of dilute solutions - relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van't Hoff factor and its significance.
UNIT - 7: EQUILIBRIUM
Meaning of equilibrium, concept of dynamic equilibrium.
Equilibria involving physical processes: Solid -liquid, liquid - gas and solid - gas equilibria, Henry's law, general characterics of equilibrium involving physical processes.
Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of ?G and ?Go in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le

Chatelier’s principle.



Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted - Lowry and Lewis) and their ionization, acid - base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions. .

UNIT-8 : REDOX REACTIONS AND ELECTROCHEMISTRY

Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.
Eectrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrausch's law and its applications.
Electrochemical cells - Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half - cell and cell reactions, emf of a Galvanic cell and its measurement; Nemst equation and its applications; Relationship between cell potential and Gibbs' energy change; Dry cell and lead accumulator; Fuel cells; Corrosion and its prevention.


UNIT-9 : CHEMICAL KINETICS


Rate of a chemical reaction, factors affecting the rate of reactions concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half - lives, effect of temperature on rate of reactions - Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

UNIT-10 : SURFACE CHEMISTRY

Adsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids - Freundlich and Langmuir adsorption isotherms, adsorption from solutions.
Catalysis - Homogeneous and heterogeneous, activity and selectivity of solid catalysts, enzyme catalysis and its mechanism.




Colloidal state - distinction among true solutions, colloids and suspensions, classification of colloids - lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids - Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.

SECTION - B


UNIT -11:


Inorganic Chemistry
CLASSIFICATON OF ELEMENTS AND PERIODICITY IN PROPERTIES

Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elementsatomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.
UNIT -12: GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF METALS

Modes of occurrence of elements in nature, minerals, ores; steps involved in the extraction of metals - concentration, reduction (chemical. and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.
UNIT - 13: HYDROGEN

Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Classification of hydrides - ionic, covalent and interstitial; Hydrogen as a fuel.
UNIT - 14: s - BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS)
Group - 1 and 2 Elements
General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.
Preparation and properties of some important compounds - sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.



UNIT - 15: p - BLOCK ELEMENTS
Group - 13 to Group 18 Elements
General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.


Groupwise study of the p – block elements Group - 13
Preparation, properties and uses of boron and aluminium; structure, properties and uses of borax, boric acid, diborane, boron trifluoride, aluminium chloride and alums.


Group - 14
Tendency for catenation; Structure, properties and uses of allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites and silicones.


Group - 15
Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of nitrogen and phosphorus.


Group - 16
Preparation, properties, structures and uses of dioxygen and ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphur dioxide, sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
Group - 17
Preparation, properties and uses of chlorine and hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.

Group -18
Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.




UNIT – 16: d – and f – BLOCK ELEMENTS
Transition Elements

General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements - physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4.
Inner Transition Elements
Lanthanoids - Electronic configuration, oxidation states, chemical
reactivity and lanthanoid contraction.


Actinoids - Electronic configuration and oxidation states.


UNIT - 17: CO-ORDINATION COMPOUNDS


Introduction to co-ordination compounds, Werner's theory; ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).
UNIT - 18: ENVIRONMENTAL CHEMISTRY


Environmental pollution - Atmospheric, water and soil. Atmospheric pollution - Tropospheric and stratospheric. .
Tropospheric pollutants - Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Green house effect and Global warming; Acid rain;
Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.

Stratospheric pollution- Formation and breakdown of ozone, depletion of ozone layer - its mechanism and effects.
Water Pollution - Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.



Soil pollution - Major pollutants such as: Pesticides (insecticides,. herbicides and fungicides), their harmful effects and prevention.
Strategies to control environmental pollution.

SECTION-C

Organic Chemistry
UNIT - 19: PURIFICATION AND CHARACTERISATION OF ORGANIC
COMPOUNDS

Purification - Crystallization, sublimation, distillation, differential extraction and chromatography - principles and their applications.
Qualitative analysis - Detection of nitrogen, sulphur, phosphorus and halogens.
Quantitative analysis (basic principles only) - Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.
Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.

UNIT - 20: SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY

Tetravalency of carbon; Shapes of simple molecules - hybridization (s and p); Classification of organic compounds based on functional groups: - C = C - , - C = C - and those containing halogens, oxygen, nitrogen and sulphur, Homologous series; Isomerism - structural and stereoisomerism.
Nomenclature (Trivial and IUPAC)
Covalent bond fission - Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.
Electronic displacement in a covalent bond - Inductive effect, electromeric effect, resonance and hyperconjugation.
Common types of organic reactions - Substitution, addition, elimination and rearrangement.




UNIT - 21: HYDROCARBONS


Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.
Alkanes - Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes.


Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff's and peroxide effect); Ozonolysis, oxidation, and polymerization.
Alkynes - acidic character; addition of hydrogen, halogens, water and hydrogen halides; polymerization.
Aromatic hydrocarbons - Nomenclature, benzene - structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation and acylation, directive influence of functional group in mono-substituted benzene.

UNIT - 22: ORGANIC COMPOUNDS CONTAINING HALOGENS


General methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions.


Uses/environmental effects of chloroform, iodoform, freons and DDT.


UNIT - 23: ORGANIC COMPOUNDS CONTAINING OXYGEN


General methods of preparation, properties, reactions and uses. ALCOHOLS, PHENOLS AND ETHERS

Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.
Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer - Tiemann reaction.


Ethers:


Structure.



ALDEHYDE AND KETONES: Nature of carbonyl group;
Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as - Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of a - hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.


CARBOXYLIC ACIDS
Acidic strength and factors affecting it.


UNIT - 24: ORGANIC COMPOUNDS CONTAINING NITROGEN


General methods of preparation, properties, reactions and uses.


Amines: . Nomenclature, classification, structure basic character and identification of primary, secondary and tertiary amines and their basic character.
Diazonium Salts: Importance in synthetic organic chemistry.


UNIT - 25: POLYMERS


General introduction and classification of polymers, general methods of polymerization - addition and condensation, copolymerization; Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses - polythene, nylon, polyester and bakelite.
UNIT - 26: BIOMOLECULES


General introduction and importance of biomolecules.


CARBOHYDRATES - Classification: aldoses and ketoses; monosaccharides (glucose and fructose), constituent monosaccharides of oligosacchorides (sucrose, lactose, maltose) and polysaccharides (starch, cellulose, glycogen).

Sharavan


PROTEINS - Elementary Idea of a - amino acids, peptide bond, . polypeptides; proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.


VITAMINS - Classification and functions.
NUCLEIC ACIDS - Chemical constitution of DNA and RNA.

Biological functions of Nucleic acids.


UNIT - 27: CHEMISTRY IN EVERYDAY LIFE
Chemicals in medicines - Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamins - their meaning and common examples. .
Chemicals in food - Preservatives, artificial sweetening agents - common examples.


Cleansing agents - Soaps and detergents, cleansing action.


UNIT - 28: PRINCIPLES RELATED TO PRACTICAL CHEMISTRY
. Detection of extra elements (N,S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.
. Chemistry involved in the preparation of the following:
Inorganic compounds: Mohr's salt, potash alum.
Organic compounds: Acetanilide, p-nitroacetanilide, aniline yellow, iodoform.


. Chemistry involved in the titrimetric excercises - Acids bases and
the use of indicators, oxalic-acid vs KMnO4, Mohr's salt vs KMnO4.


. Chemical principles involved in the qualitative salt analysis




AIEEE Syllabus of Examination

MATHEMATICS


I : ALGEBRA

Unit 1 Sets, Relations and Functions

Sets and their Representations, Union, intersection and complements of sets and the algebraic properties, Relations, equivalence relations, mappings, one-one, into and onto mappings, composition of mappings.

Unit 2 Complex Numbers

Complex number in the form a+ib and their representation in a plane. Argand diagram. Algebra of complex numbers, Modulus and Arguments (or amplitude) of a complex number, square root of a complex number. Cube roots of unity, triangle-inequality.

Unit 3 Matrices and Determinants

Determinants and matrices of order two and three, properties of determinants. Evaluation of determinants. Area of triangles using determinants, Addition and multiplication of matrices, adjoint and inverse of matrix. Test of consistency and solution of simultaneous linear equations using determinants and matrices.

Unit 4 Quadratic Equations

Quadratic equation in real and complex number system and their solutions. Relation between roots and co-efficients, nature of roots, formation of quadratic equations with given roots; Symmetric functions of roots.

Unit 5 Permutation and Combination

Fundamental principle of counting; Permutation as an arrangement. Meaning of P(n,r) and C(n,r) Simple applications.

Unit 6 Mathematical Induction and its applications

Unit 7 Binomial Theorem and its Applications

Binomial Theorem for a positive integral index; general term and middle term; Binomial Theorem for any index. Properties of Binomial Co-efficients. Simple applications for approximations.

Unit 8 Sequences and Series

Arithmetic, Geometric and Harmonic progressions. Special cases of Sn, Sn2, Sn3. Arithmetic-Geometric Series, Exponential Logarithmic series.

II : CALCULUS

Unit 9 Differential Calculus

Polynomials, rational, trigonometric, logarithmic and exponential functions. Inverse functions, Graphs of simple functions, Limits, Continuity; differentiation of the sum, difference, product and quotient of two functions, differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order upto three. Applications of derivative, monotonic functions. Maxima and minima of functions of one variable.

Unit 10 Integral Calculus

Integral as an anti-derivative, Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric identities. Integral as limit of a sum. Properties of definite integrals. Evaluation of indefinite integrals; Determining areas of the regions bounded by simple curves.

Unit 11 Differential Equations

Ordinary differential equations, their order and degree. Solution of differential equations by the method of separation of variables. Solution of homogeneous and linear differential equations.

III : TWO AND THREE DIMENSIONAL GEOMETRY

Unit 12 Two dimensional Geometry

Recall of Cartesian system of Rectangular co-ordinates in a plane, distance formula, area of a triangle, condition for the collinearity of three points and section formula, centroid and in-centre of a triangle. Locus and its equation, translation of axes, slope of a line; parallel and perpendicular lines. Intercepts of a line on the coordinate axes.

The straight line and pair of straight lines
Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrency of three lines, distance of point from a line, coordinates of orthocentre and circumcentre of triangle, equation of family of lines passing through the point of intersection of two lines homogeneous equation of second degree in x and y, angle between pair of lines through the origin, combined equation of the bisectors of the angles between a pair of lines, condition for the general second degree equation to represent of pair of lines, point of intersection and angle between two lines represented by S=O and the factors of S.

Circles and system of Circles
Standard form of equation of a circle, general form of the equation of a circle its radius and centre, equation of a circle in the parametric form, equations of a circle. When the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to the circle. Length of the tangent, equation of the tangent, equation of a family of circles through the intersection of two circles, condition for two intersecting circles to be orthogonal.

Conic Section
Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard forms, condition for y=mx+c to be a tangent and point(s) of tangency.

Unit 13 Three dimensional Geometry

Coordinates of the point in space, distance between the points; Section formula, direction ratios and direction cosines, angle between two intersecting lines, equations of a line and plane in different forms; intersection of a line and a plane, coplanar lines, equation of a sphere, its centre and radius. Diameter form of the equation of a sphere.

IV : VECTORS

Unit 14 Vector Algebra

Vector and Scalars, addtion of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, vector triple product. Application of vectors to plane geometry.

V : STATISTICS

Unit 15 Measures of Central Tendency and Dispersion

Calculation of Mean, median and mode of grouped and unpgrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

Unit 16 Probability

Probability of an event, addition and multiplication theorems of probability and their applications; Conditional probability; Probability distribution of a random variable; Binomial distribution and its properties.

VI : TRIGONOMETRY

Unit 17 Trigonometrical ratios, identities and equations. Inverse trigonometric function and their properties. Properties of triangles, solution of triangles. Height and Distances.

VII : STATICS AND DYNAMICS

Unit 18 Statics

Resultant of Coplanar forces; moments and couples. Equilibrium of three concurrent forces.

Unit 19 Dynamics

Speed and velocity, average speed, instantaneous speed, acceleration and retardation, resultant of two velocities, relative velocity an its simple applications. Motion of a particle along a line moving with constant acceleration. Motion under gravity. Laws of motion, Projectile motion.


PHYSICS SYLLABUS


The syllabus contains two Sections - A & B. Section - A pertains to the Theory Part, having 80% weightage, while Section - B contains Practical Component (Experimental Skills) having 20% weightage.


SECTION - A


Unit – I: Physics and Measurement

Physics, technology and society, S I units, Fundamental and derived units. Least count, accuracy and precision of measuring instruments, Errors in measurement, Significant figures.


Dimensions of Physical quantities, dimensional analysis and its applications.

Unit – II: Kinematics


Frame of reference. Motion in a straight line: Position-time graph, speed and velocity. Uniform and non-uniform motion, average speed and instantaneous velocity


Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion.


Scalars and Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion.

Unit - III: Laws of Motion
Force and Inertia, Newton's First Law of motion; Momentum, Newton's Second Law of motion; Impulse; Newton's Third Law of motion. Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces.
Static and Kinetic friction, laws of friction, rolling friction.
Dynamics of uniform circular motion: Centripetal force and its applications.



Contd…P/2


-2-


Unit -IV: Work, Energy and Power
Work done by a constant force and a variable force; kinetic and potential energies, work-energy theorem, power.

Potential energy of a spring, conservation of mechanical energy, conservative and non-conservative forces; Elastic and inelastic collisions in one and two dimensions.

Unit – V: Rotational Motion

Centre of mass of a two-particle system, Centre of mass of a rigid body; Basic concepts of rotational motion; moment of a force, torque, angular momentum, conservation of angular momentum and its applications; moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications.

Rigid body rotation, equations of rotational motion.

Unit –VI: Gravitation

The universal law of gravitation.

Acceleration due to gravity and its variation with altitude and depth.
Kepler's laws of planetary motion.

Gravitational potential energy; gravitational potential.

Escape velocity. Orbital velocity of a satellite. Geo-stationary satellites.


Unit - VII: Properties of Solids and Liquids

Elastic behaviour, Stress-strain relationship, Hooke's. Law, Young's
modulus, bulk modulus, modulus of rigidity.

Pressure due to a fluid column; Pascal's law and its applications.

Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, Reynolds number. Bernoulli's principle and its applications.


Contd…P/3


-3-



Surface energy and surface tension, angle of contact, application of surface tension - drops, bubbles and capillary rise.

Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat.

Heat transfer-conduction, convection and radiation, Newton’s law of cooling.
Unit –VIII: Thermodynamics

Thermal equilibrium, zeroth law of thermodynamics, concept of temperature. Heat, work and internal energy. First law of thermodynamics.

Second law of thermodynamics: reversible and irreversible processes. Camot engine and its efficiency.

Unit -IX: Kinetic Theory of Gases

Equation of state of a perfect gas, work done on compressing a gas.
Kinetic theory of gases - assumptions, concept of pressure. Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path, Avogadro's number.

Unit –X: Oscillations and Waves
Periodic motion - period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring - restoring force and force constant; energy in S.H.M. - kinetic and potential energies; Simple pendulum - derivation of expression for its time period; Free, forced and damped oscillations, resonance.
Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound.

Contd…P/4


-4-


Unit - XI: Electrostatics

Electric charges: Conservation of charge, Coulomb's law-forces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.
Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field.
Electric flux, Gauss’s law and its applications to find field due to infinitely long, uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.

Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field.

Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.


Unit - XII: Currrent Electricity


Electric current, Drift velocity, Ohm's law, Electrical resistance, Resistances of different materials, V-I characteristics of Ohmic and nonohmic conductors, Electrical energy and power, Electrical resistivity, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. .
Electric Cell and its Internal resistance, potential difference and emf of a cell, combination of cells in series and in parallel.
Kirchhoff's laws and their applications. Wheatstone bridge, Metre bridge.
Potentiometer - principle and its applications.




Contd..P/5


-5-


Unit - XIII: Magnetic Effects of Current and Magnetism


Biot - Savart law and its application to current carrying circular loop.
Ampere's law and its applications to infinitely long current carrying
straight wire and solenoid.
Force on a moving charge in uniform magnetic and electric fields. Cyclotron.


Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferro- magnetic substances
Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.

Unit-XIV: Electromagnetic Induction and Alternating Currents

Electromagnetic induction; Faraday's law, induced emf and current; Lenz's Law, Eddy currents. Self and mutual inductance.

Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LCR series circuit, resonance; Quality factor, power in AC circuits, wattless current.

AC generator and transformer.

Unit – XV: Electromagnetic Waves

Electromagnetic waves and their characteristics. Transverse nature of electromagnetic waves.

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma rays). Applications of e.m. waves .


Contd...P/6


-6-


Unit – XVI: Optics

Reflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers.

Wave optics: wavefront and Huygens' principle, Laws of reflection and refraction using Huygen's principle. Interference, Young's double slit experiment and expression for fringe width, coherent sources and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarized light; Brewster's law, uses of plane polarized light and Polaroids.

Unit-XVII: Dual Nature of Matter and Radiation

Dual nature of radiation. Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation; particle nature of light.

Matter waves-wave nature of particle, de Broglie relation. Davisson-Germer experiment.

Unit - XVIII: Atoms and Nuclei

Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum.

Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivity-alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.



Contd…P/7


-7-


Unit – XIX: Electronic Devices

Semiconductors; semiconductor diode: I-V characteristics in forward and reverse bias; diode as a rectifier; I-V characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.

Unit – XX: Communication Systems

Propagation of electromagnetic waves in the atmosphere; Sky and space wave propagation, Need for modulation, Amplitude and Frequency Modulation, Bandwidth of signals, Bandwidth of Transmission medium, Basic Elements of a Communication System (Block Diagram only).

Contd……P/8

-8-


SECTION –B


Unit – XXI: Experimental Skills

Familiarity with the basic approach and observations of the experiments and activities:

1. Vernier callipers—its use to measure internal and external diameter and depth of a vessel
2. Screw gauge—its use to determine thickness/diameter of thin sheet/wire.
3. Simple Pendulum - dissipation of energy by plotting a graph between square of amplitude and time.
4. Metre Scale - mass of a given object by principle of moments
5. Young's modulus of elasticity of the material of a metallic wire
6. Surface tension of water by capillary rise and effect of detergents
7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body.
8. Plotting a cooling curve for the relationship between the temperature of a hot body and time.
9. Speed of sound in air at room temperature using a resonance tube.
10. Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures.
11. Resistivity of the material of a given wire using metre bridge.
12. Resistance of a given wire using Ohm's law
13. Potentiometer –
(i) Comparison of emf of two primary cells.
(ii) Internal resistance of a cell.

Contd…P/9


-9-



14.



Resistance and figure of merit of a galvanometer by half deflection method.


15.


Focal length of:


(i) (ii) (iii)


Convex mirror
Concave mirror, and
Convex lens


16. Using parallax method. Plot of angle of deviation vs angle of incidence for a triangular prism.

17. Refractive index of a glass slab using a travelling microscope

18. Characteristic curves of a p - n junction diode in forward and reverse bias.




19.

Characteristic curves of a Zener diode and finding reverse break down voltage.


20.


Characteristic curves of a transistor and finding current gain and voltage gain


21.


Identification of Diode, LED, Transistor, IC, Resistor, Capacitor from mixed collection of such items.


22.


Using multimeter to:


(i) (ii) (iii)

(iv)


Identify base of a transistor
Distinguish between npn and pnp type transistor
See the unidirectional flow of current in case of a diode and an LED.
Check the correctness or otherwise of a given electronic component (diode, transistor or IC).